Text
E-book The EBMT Handbook : Hematopoietic Stem Cell Transplantation and Cellular Therapies
Research efforts on how to repair radiation effects resulted from observations on radiation damage among survivors of the atomic bomb explosions in Japan (reviewed in van Bekkum and de Vries 1967). In 1949, Jacobson and colleagues discov-ered protection of mice from TBI by shielding their spleens with lead. Two years later, Lorenz and colleagues reported radiation protection of mice and guinea pigs by infusing marrow cells. Initially many investigators, including Jacobson, thought that the radiation protection was from some humoral factor(s) in spleen or marrow. However, by the mid-1950s, this “humoral hypothesis” was firmly rejected, and several lab-oratories convincingly demonstrated that the radiation protection was due to seeding of the marrow by donor cells.This discovery was greeted with enthusiasm because of the implications for cell biology and for therapy of patients with life-threatening blood disorders. The principle of HSCT was simple: high-dose radiation/chemotherapy would both destroy the diseased marrow and suppress the patient’s immune cells for a donor graft to be accepted. Within 1 year of the pivotal rodent studies, Thomas and colleagues showed that mar-row could safely be infused into leukemia patients and engraft, even though, in the end, the leuke-mia relapsed. In 1958, Mathé’s group attempted the rescue, by marrow transplantation, of six nuclear reactor workers accidentally exposed to TBI. Four of the six survived, although donor cells persisted only transiently. In 1965, Mathé and colleagues treated a leukemia patient with TBI and then marrows from six relatives, absent any knowledge of histocompatibility (Mathe et al. 1965). A brother’s marrow engrafted. The patient went into remission but eventually suc-cumbed to a complication, GVHD. Following up on early observations by Barnes and Loutit in mice, Mathé coined the term “graft-vs.-leukemia effect.” In 1970, Bortin summarized results of 200 human marrow grafts reported between 1957 and 1967 (Bortin 1970). All 200 patients died of either graft failure, GVHD, infections, or recur-rence of leukemia. These transplants were performed before a clear understanding of conditioning regimens, histocompatibility matching, and control of GVHD. They were based directly on work in inbred mice, for which histocompatibility match-ing is not absolutely required. In 1967, van Bekkum and de Vries stated, “These failures have occurred mainly because the clinical applications were undertaken too soon, most of them before even the minimum basic knowledge required to bridge the gap between mouse and patient had been obtained.” Clinical HSCT was declared a total failure and prominent immunologists pro-nounced that the barrier between individuals could never be crossed.
Tidak tersedia versi lain