Text
E-book Sliding Base Structures : Analysis and Design
Base isolation is an effective approach for reducing damages to structures and their contents under severe earthquake excitations. It is generally implemented by using special isolators, such as laminated rubber bearings (e.g., Kelly, 1986; Kikuchi & Aiken, 1997; Skinner et al., 1993; Yamamoto et al., 2009) and friction pendulum (FP) bearings (e.g., Becker & Mahin, 2013; Castaldo & Tubaldi, 2015; Mokha et al., 1991; Roussis & Constantinou, 2006). The properties of these isolators can be elaborately designed to achieve a certain structural performance. However, they are expensive and require high construction techniques. Therefore, when the cost is a major concern, base isolation using isolators may not be an appropriate choice. Adopting a sliding interface between the base of the superstructure and the foun-dation (Fig. 1.1) can also reduce the seismic response of the superstructure. The mechanism is very simple: as the friction force between the superstructure and the foundation has an upper limit, the seismic force transmitted to the superstructure is limited. Structures that adopt this type of isolation technique are called sliding base (SB) structures in this book. Since the implementation of SB structures is simple and cost effective, they are applicable to low-rise buildings in rural areas. Actually, SB structures have been used in some low-rise masonry buildings (Li, 1984; Zhou, 1997). For the past four decades, several materials have been investigated regarding their potential use along the sliding interface of SB structures. Qamaruddin et al. (1986) conducted shaking table tests on sliding brick building models with different sliding layer materials, namely, graphite powder, dry sand, and wet sand, and obtained fric-tion coefficients of 0.25, 0.34 and 0.41, respectively, for the corresponding interfaces. Tehrani and Hasani (1996) conducted experimental studies on adobe buildings with dune sand and lightweight expanded clay as sliding layers; the friction coefficients were reported as 0.25 for dune sand and 0.2–0.3 for lightweight expanded clay. Barba-gallo et al. (2017) tested a steel-mortar interface lubricated by graphite powder; the static and dynamic friction coefficients were close to 0.19 and 0.16, respectively, and they were independent of both the sliding velocity and the superstructure properties. Polymer materials are also suitable choices for the sliding interface. Yegian et al. (2004) investigated the frictional characteristics of four synthetic interfaces [namely, geotextile-high density polyethylene (HDPE), polypropylene (PTFE)-PTFE, ultrahigh molecular weight polyethylene (UHMWPE)-UHMWPE, and geotextile-UHMWPE] as potential candidates for sliding isolation through cyclic and shaking table tests. It was determined that the geotextile-UHMWPE interface was suitable for sliding isolation applications because the friction coefficient of this interface is insensitive to large variations in the sliding velocity and normal stress; as a result, this interface can easily be introduced into engineering design. The obtained static and dynamic friction coefficients of the geotextile-UHMWPE interface were approximately 0.11 and 0.08, respectively. Nanda et al. (2012, 2015) conducted experimental studies on four sliding interfaces with green marble against HDPE, green marble, geosynthetics and rubber sheeting, respectively. The static friction coefficients were found to be independent of the normal stress, and the dynamic friction coefficients were insensitive to variations in the sliding velocity. Moreover, the observed dynamic friction coefficients of the four investigated interfaces ranged from 0.07 to 0.18, and the relative differences between the static and dynamic friction coefficients were all below 15%. Jampole et al. (2016) adopted sliding isolation bear-ings consisting of HDPE sliders and galvanized steel surfaces to seismically isolate light-frame residential houses; shaking table tests showed that the friction coefficient of this sliding interface was nearly 0.18 with a slight variation between the stick and sliding phases.
Tidak tersedia versi lain